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Abstract. The most general form of a marginal extended perturbation in a two-dimensional 
system is deduced from scaling considerations. It includes as particular cases extended 
perturbations decaying either from a surface, a line or a point for which exact results have been 
previously obtained. The first-order corrections to the local exponents, which are functions of the 
amplitude of the defect, are deduced from a pelturbation expansion of the two-point correlation 
functions. Assuming c o n k ”  under conformal transfdnnation, the perturbed system is mapped 
onto a cylinder. Working in the Hamiltonian limit, the first-order corrections to the lowest gaps 
are calculated for the king model. The results c o n h  the validity of the gapenponent relations 
for the perturbed system. 

1. Introduction 

Following their application to semi-infinite two-dimensional systems [l], the methods of 
conformal invariance have been used to study the local critical behaviour near line defects 
[2-4] and star-shaped defects [5 ]  in the two-dimensional king model. Although the 
symmetries usually considered to be necessary for conformal invariance 1671 (dilatation, 
rotation and translation invariance) are partially broken by such perturbations, the properties 
associated with conformal invariance are preserved and the spectrum-generating algebra has 
even been identified [%lo]. 

There. are some indications that scaling operators remain covariant under conformal 
transformation in the presence of marginal extended perturbations too. This type of defect, 
which was originally introduced as a deviation from’the bulk coupling strength with a power- 
law decay from a free surface in the 2D Ising m d e l  [ll], has been extensively studied in 
the last years [12-171. It becomes marginal when the decay exponent is equal to the 
scaling dimension of the coupling (see section 2). Then local exponents may vary with the 
perturbation amplitude. When the system is mapped onto a strip, provided the perturbation 
profile is properly transformed, the gapexponent relations and the tower-like structure of 
the spectrum are preserved [18-201 but the associated algebra has not yet been determined. 
Similar results were obtained with an extended perturbation induced by an internal line 
defect [211. This type. of perhubation was first considered in [22] (see also [23-25]). In 
the case of a radial extended perturbation [26,27] or with a decaying surface field 1281, 
the gap-exponent relations are also satisfied although the equidistant-level structure of the 
spectrum is lost. 

In the present work we consider the most general marginal extended perturbation in 
&e 2D Iskg model and show that, up to first order in the defect amplitude, the gap- 
exponents relations remain valid. The form of the perturbation is obtained through scaling 
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considerations in section 2. The first-order corrections to the local exponents are deduced 
from a perturbation calculation of the two-point correlation functions to logarithmic accuracy 
in section 3. This is followed by a determination of the transformed profile in the strip 
geomehy and a study of the condition for shape invariance under the special conformal 
transformation in section 4. The tirst-order shifts of the lowest gaps are calculated and 
the validity of the gap-exponent relations examined in section 5. Specific examples are 
discussed in section 6. 

L Turban and B Berche 

2. Scaling considerations 

In a continuum description let the Hamiltonian of a two-dimensional inhomogeneous system 
be written as 

where 'Hc is the critical point Hamiltonian of a co&ormally invariant system, A(r)  is an 
extended perturbation, with scaling dimension ym, which is conjugate to the local operator 
@(r)  with bulk scaling dimension xm = 2 - y+. This perturbation can be written as 
the product of an amplitude g by a shape function 2 ( r )  which gives the form of the 
inhomogeneity. It is assumed to be covariant under rescaling so that, in polar coordinates, 

r 
(g' 6 )  = bw2(r ,  6 )  

where the scale invariance of the angle 6 has been taken into account. With b = r equation 
(2) leads to a power-law behaviour for the radial part 

whereas the angular dependence remains arbitrary. 
The inhomogeneity A(r)  transforms according to 

A'(r') = g '2  (b, r 6 )  = by+A(r) = bY+-g2 (g, r 6 )  
(4) 

As a consequence, the perturbation amplitude scales as follows [29,30] 

g' = bY+-g. (5) 

When w y~ the perturbation decays strongly enough for the extended perturbation to be 
irrelevant. When w < ym, on the contrary, the amplitude increases under rescaling, the 
perturbation is relevant and the original fixed point is unstable. More interesting is the 
borderline situation where w = y+. Then the extended perturbation is marginal and non- 
universal (g-dependent) local exponents are expected. These results are easily generalized 
in higher dimensions. 
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3. Perturbation theory 

We now specialize to the case where the perturbation term in (1) is marginal and involves 
the energy density operator &(r). Then 

- p H  = - p H , + g ~ 2 ( r ) & ( r ) d 2 r .  

The first-order change in the local critical behaviour can be deduced from a perturbation 
expansion of the correlation functions [22]. The order parameter  two-point correlation 
function has the following expansion in powers of g 

where the double brackets denote the irreducible part of a multi-point correlation function 
and R is far from the defect in the bulk of the system. The nth-order contribution can be 
rewritten as 

6G$J = g" / ((u(O)u(R)&(rI)&). . .&(r,J)) fiZ'(rj) d'ri . (8) 

where the n !  in the prefactor disappears due to the ordering on the ri. The main contribution 
to the multiple integral comes from regions where operators are grouped pairwise close 
together. Then the operator product expansion can be used to reduce the multi-point 
function. With a perturbation in the bulk of the system the following reduction relations 
are needed 

I ,  <r2."<,* iEl 

U (rl)&) =~au(r1)r;;" &(rl)&(r2) b&(rI)rl;xz. (9) 

The coefficient b in  the second relation vanishes when the system is invariant under duality 
( E  -+ -E) .  Then the expansion should be continued one step further. This occurs for 
the king model only in the bulk [31] since the surface case does not possess the duality 
symmetry. 

Let us first suppose that rol is the smallest distance entering the correlation function in 
(8). Then the first relation in (9) can be used and the integration over rl canied out to give 

Since in the marginal case w = 2 - x,, the first integral contributes a factor In r2. It may be 
checked that when one first conhacts other pairs, like &(r&(n), the result is logarithmically 
smaller. It follows that, to the leading logarithmic order, 

where Sy is the angular integral in equation (10). The same process can be iterated n times 
leading to 

1 
n! 

SG$J'= -fgaS~lnR]"((u(O)u(R))) 
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Here the n!  is restored through the successive integrations involving increasing powers of 
a logarithm. Finally the perturbation series can be summed giving 

L Turban and B Berche 

G A R ,  g) = Guu(R, O)RpoSf (13) 

to logarithmic accuracy. The order-parameter local scaling dimension can be read out of 
the correlation function. It is indeed non-universal and reads 

2n 

x A g )  = x, - g a l  f(0) + O(s2). (14) 

The same method can be applied step by step to the calculation of the energy density 
correlation function using the second reduction relation in equation (9). The local scaling 
dimension is then 

2n 
x&) = ~ x ,  - g b l  f (0 )  +. O(gz). (15) 

Let us now consider the case of an extended perturbation centred on the surface of 
a semi-infinite system [32]. In the direction perpendicular to the free surface translation 
invariance is lost and the operator product expansion has to be modified accordingly. When 
the first point is the origin, located on the surface, the structure constants in (9) only acquire 
an angular dependence 

m(O)E(r)  N a(e)o(0)r-rc c(O).s(r) z b ( 0 ) . s ( O ) ~ - ~ ~  (16) 

where 0 is the polar angle measured from the surface. When the second point goes to the 
surface too, i.e. when 0 N r-' or n - r-', the operator product decays with an exponent 
which is the surface scaling dimension x i  = d [33]. Then one expects quite generally 
a(0) - b(0) - (sinO)z-xc. 

For the king model, with xs = 1, one indeed obtainst [32] 

(17) 

The bulk values in (9) are a = (2n)-' and b = 0 due to the duality symmetry in the 2D 
bulk king system 1311. In this latter case the expansion is in powers of gz. 

The calculation of the two-point correlation functions then proceeds as above in the 
bulk. The main change is introduced by the angular dependence of the structure constants 
and one gets the following results for the first-order corrections to the local exponents 

2 .  8 .  
n(0) = -sm0 b(0) = ?rsinf3cos20. n 

provided the angular integrals are not singular. The same restriction applies to the bulk 
results in equations (14) and (15). 

t The polm angle was measured from the perpendicular direction in [321. 
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4. Conformal aspects 

In this section we assume that conformal techniques can still be used in the presence of a 
general extended marginal perturbation. The conformal mapping of the perturbed system, 
either infinite or semi-infinite, onto a strip will be used in the next section to get the perturbed 
gaps, allowing a compariion with the perturbation results for the local exponents. 

4.1. Plane-to-cylinder transformation 
We use the mapping w = ( L / h ) l n z  of the full plane z = rexp(i8) onto a'cylinder 
w = U + iu, -CO c U c +CO, 0 c U c L [34]. Under this transformation the marginal 
perturbation A(z) with scaling dimension y# is changed into [18] 

A(w) = b(z)"A(z) (1% 
with a dilatation factor given by 

The shape function transforms in the same way since g is invariant. Using 

r = e x p h u / L  8 = 2nu/L (21) 
one obtains 

A(u, U) = g(2n/L)Y+ f (2xulL) 
where translation invariance along the strip, which  is^ directly linked to the marginal 
behaviour, is essential for the conformal properties. The perturbation is generally 
inhomogeneous in  the^ transverse direction although translation invariance is preserved in 
the case of a radial perturbation [26,27]. 

4.2. Special conformal transformation 
The infinitesimal special conformal transformation also plays an important role. When a 
system is invariant under this transformation, differential equations for correlation functions 
or profiles can be obtained, leading to the asymptotic behaviour of the first and completely 
determining the second [l,  3.51. 

, ,  

Let the transformation be written as 
z' = z + 6zz lir = z' = r'exp(i8'). (23) 

Up to O(E) ,  one obtains 

Together with (19), this leads to~the following transformed perturbation 
r' = r + ~ r ~ c o s 8  8' = 0 +er sin8 : b(r, 8) = 1 - Z E ~ C O S ~ .  (24) 

A(rl.8') 

The perturbation is shape-invariant when the coefficient of E vanishes, i.e. when 
A(r, 0) = g/lr sin8IY@. (26) 

This corresponds to an extended perturbation decaying either from the surface of a semi- 
infinite system~[11] or from a l i e  defect in the bulk [22-25,211. Then the correlation 
functions satisfy the same differential equation as in the surface case [l]. Their asymptotic 
behaviour can also be obtained, with defect exponents replacing surface ones. Transforming 
the correlation functions via the plane-twcylinder mapping, &e gap-exponent relation and 
the tower-lie structure of the spectrum immediately follows, in agreement with exact results 
for these perturbations [18,21]. 
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5. Gap-exponent relations 

5.1. Hamiltonian limit and rescaling 

We now consider a temperature-like extended marginal perturbation in the 2D king model 
at the bulk critical point. On the cylinder the original perturbation is transformed into (22) 
with q5 = E and ye = 1. In the case of a semi-infinite original system (0 < 0 <, z), the 
transformed system is a strip with free boundary conditions (FBC) at U = 0 and v = L / 2  
on the cylinder whereas for an infinite original system, periodic boundary conditions (PBC) 
have to be taken at U = L. 

We work on a square lattice in the extreme anisotropic limit, with unpertnrbed two- 
spin interactions K1 >> 1 in the time duation along the cylinder axis and Kz << 1 in 
the transverse one. At the bulk critical point Kz = K; where KT is a dual coupling 
satisfying tanh(KT) = exp(-2K1). The perturbation is assumed to act only on the transverse 
interactions Kz. 

In the Hamiltonian limit [36,7] the system becomes anisotropic with a correlation length 
ratio [37] 

L Turban and B Berche 

Isotropy can be restored by rescaling the lattice parameter nl 
al = 2Kf measured in units of a2 in the transverse direction. 
operator may be written as 

7 = exp(-alU). 

The king Hamiltonian then takes the form 

(27) 

in the time direction to 
The row-to-row transfer 

where the us are Pauli spin operators. The first part in (29) corresponds to a homogeneous 
system at the bulk critical point, properly normalized to give critical excitations with velocity 
U, = 1 [38]. The perturbation term keeps the same amplitude as in the continuum expression 
(22) since, len,&s being measured in units of az, exp(-X) operates a transfer by one unit 
length in the time direction and each perturbed bond in U is associated with one surface 
unit on the isotropic rescaled system. 

5.2. Diagonalization of rhe unperturbed Hamiltonian 

The unperturbed part of the Hamiltonian in (29) is rewritten as a quadratic form in fermion 
operators through a Jordan-Wigner transformation [39] 

(30) 

where the chain length N is assumed to be even in the following. For a semi-infinite 
original system one has to take N = L/2 and P = 0 in (30). If the original system 
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covers the whole plane then N = L and P = Jrl is an eigenvalue of the parity operator 
P =~exp(in C, c;cJ which commutes with Wc. 

The Hamiltonian is put under diagonal fo& 

through a canonical transformation~[40,41]. The squares of the excitation energies for 
the diagonal fermions in (31), &k = 21sink/21, can-be,obtained as the solutions of two 
equivalent eigenvalue problems with normalized eigenvectors, @k and Wk. The wavevector 
quantization depends on the boundary conditions, i.e. on P: 

X , ~ f i  N -~ - x 
k(P = +1) = ( 2 p  + 1)- k(P  = -1) = 2p-  2 sPs - - - l  2 (BC) N N 

( 3 W  

(3%) 
X 

k(P = 0) = ( 2 p  + 1)- O < p < N - 1  (mc). , 
2 N + 1  

With PBcs, the normalized eigenvectors are given by 

whereas one obtains 

sinkn (34) 
2 

m cos k (II - i) *k(n) = (-I)"*' 
2 

m @k(n) = (-1y 

 with^ ma. 

5.3. Perturbation theory 

Up to first order in the perturbation amplitude, the levels of W, in (29) are shifted by 

The relevant levels in the following &e the ground state 10) and the states Iu) and I&) of the 
unperturbed Hamiltonian which are involved in the calculation of the lowest gaps. These 
states are the lowest ones with non-vanishing matrix elements (0lu;lu) and ( O ~ U , ~ ~ + ~ ~ & )  
with the ground state. 
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With periodic boundary conditions and N even, IO) is the vacuum of 7&(+1). le) = 
q$q:lO), which is even, also belongs to the spectrum of  XH,(+l) and contains the two 
lowest excitations corresponding to p = 0 and p = -1 in k ( P  = +l). Iu) = t $ I O ) + ~ ~ ,  
which is odd, belongs to the spec!” of ‘Hc(-l). It contains a single excitation with 
vanishing wavevector corresponding to p = 0 in k ( P  = - 1 ) .  As a consequence this state 
is’degenerate with the vacuum 10)(-1) of Xc(-l). 

In the case of FBcs, the ground state 10) is the vacuum of Xc(0),  I E )  is defined as above 
with two excitations corresponding to p = 0 and p = 1 in k(P = 0) while 10) = q:lO) 
only contains the lowest one. 

The matrix elements in (35), like the Hamiltonian, are obtained making use of  the 
Jordan-Wigner and canonical transformations and read 

Do(n) = (oIu;u;+llo) = - C Y k ( n ) 4 k ( n  + 1 )  ( 3 6 4  

&(n) (UIU;U:+IIU) = DO@) + 2Wo(n)@o(fif 1) (36b) 

D,(n) = ( & I U ; U ; + ~ I & )  = Do(n) + 2[Yo(n)40(n + 1 )  + Y1(n)41(n + 1)l. ( 3 6 ~ )  

k 

In the case of PBCS, the final expressions for the boundary terms (n = N ,  n + 1 = 1 )  have 
to be multiplied by -P as in (30) and the eigenvectors 4~ and Yk are those involved in the 
diagonalization of ‘He(P) where P is the parity of the states in the matrix elements. Then, 
using (32)-(34), one obtains 

Do(n) = ( N sin . &>-’ ( P = + l )  ( 3 7 4  

while for FBCS 

8 . HH nrr 
N D&) - Do(n) =.-sin (N) cos2 (N) + o ( N - 2 ) .  

According to the gapexponent relation [34],  one expects the scaling dimensions of  the 
operator a = U ,  E to be given by 

N 
xa(g) = $im z;;[Ea‘g)  - EoWl 

which, together with (35) and (36), leads to the fust-order changes 

N 
(39) = - [Ea@ - EoCg)] N+m n 
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In the continuum limit, using (37)-(38) for large N, this transforms into 

XA?) = 1 + O ( g 3  (41bj 

for the perturbed scaling dimensions near the source of the inhomogeneity in the plane and 

de f(e) sine + O(g2) ~ ~ (42u) 
~2 n 

de f(e) sine c 0 2 e  + o(g2) (426) 

in the half-plane, in full agreement with the results of section 3. 

6. Elliptic defects 

As an illustration of the the perturbation results one may consider an extended defect with 
elliptic symmetry in the 2D king model. The angular dependence 

.~ f(e) = (sin2e + K C O S ~ ~ ) - ~ / ~  o c K < 1 (43) 

interpolates between the line and radial defects corresponding to K = 0 and K =~ 1, 
respectively. 

In the infinite king system, using (41a) . 

where K is the complete elliptic integral. The radial defect result [26, 27, 421, xu(g) = 
1. The correction term displays a logarithmic 

divergence in the line defect limit, K + 0, which is linked to the singular behaviour of 
the perturbation at e = 0 and it. Introducing a cut-off, one gets a jump of the magnetic 
exponent at g = 0 and local order at the bulk critical point for g > 0 [21,31,43]. 

In a semi-infinite system (43) corresponds to a defect with its main axis along the 
surface. Then, using (42) 

- g + O(g2).is recovered in the limit K 

(454 

(45b) 

In the surface defect l i t ,  K = 0, x:(g) = 1 2 - 2g + O(g2), x,"(g) = 2 - 4g + O(g2) 'while 
for the radial defect, K + 1, .x;(g) = 1/2 -4g/x +O(g2), xf(g) = 2 - 16g/(3%)+0(g2) 
in agreement with know exact results [18,26]. 
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When the main axis of the defect is perpendicular to the surface, i.e. with 

one obtains 

(474 

with the same l i i t s  as in (45) for the radial defect (K = 1). When K = 0, i.e. with a line 
defect perpendicular to the surface, xi(g)  = 2 - 8g /a  + O(g2) whereas the correction to 
x; diverges logarithmically. Then one expects, as for a bulk extended line defect, a jump 
of the surface magnetic exponent at g = 0 and local order for enhanced couplings. This 
could be checked using the techniques of [18,21]. 

7. Conclusion 

Our main result is the extension of the gapexponent relations to the case of a general 
marginal extended perturbation in the 2D Ising model. Although this result was obtained 
only up to first order in the defect amplitude, one may conjecture that it remains true to all 
orders, Iike in the exactly solved limiting cases. 

The shape invariance of the perturbation under the special conformal ixansformation, 
when it decays l i e  a power of the distance to a l ie ,  leads on the cylinder to a 
spectrum containing conformal towers. At least in this case further work should allow 
the determination of the spectrum-generating algebra. 

When the perturbation expansion for the exponents contains divergent terms, one expects 
local order at the bulk critical point and a first-order defect transition when the couplings 
are enhanced as for an internal line defect. 

Finally let us mention that our results could be extended to other two-dimensional 
conformal systems using conformal perturbation theory [6,7]. 
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